Journal of Geometry and Physics 10 (1992) 93-106 North-Holland

On a connection governing parallel transport along 2×2 density matrices

J. Dittmann

Fachbereich Mathematik, Universität Leipzig, Augustusplatz 10, 7010 Leipzig, Germany

G. Rudolph

Fachbereich Physik, Universität Leipzig, Augustusplatz 10, 7010 Leipzig, Germany

Received 27 February 1992 (Revised 19 June 1992)

We investigate a connection governing parallel transport along mixed states recently defined by Uhlmann for the case of 2×2 matrices. We discuss the underlying bundle structure including singular orbits, show an interesting relation to instantons and prove that the connection fulfils the source-free Yang-Mills equation with respect to the Riemannian metric on the space of density matrices induced by the Bures metric.

Keywords: connections, density matrices, Yang-Mills equation, Riemannian metric 1991 MSC: 53 B 07, 81 Q 99

1. Introduction

Recently a lot of work has been done on Berry's phase [1] and its nonabelian generalizations. A large list of references, probably exhausting the literature written on this subject until 1990, can be found in ref. [2]. In particular, Uhlmann proposed and discussed in a series of papers [3] a connection governing parallel transport along mixed states, which is naturally related to the concept of purification of density matrices.

Let *H* be the Hilbert space of a quantum system with scalar product $\langle \cdot, \cdot \rangle$. A density operator is a positive trace class operator with trace one. It defines a mixed state, that means, a functional on the algebra \mathscr{A} of observables via

$$\mathscr{A} \ni a \mapsto \rho(a) = \operatorname{Tr}(a\rho) . \tag{1.1}$$

The concept of purification consists in representing mixed states by pure states, that means, vectors in an extended Hilbert space H^{ext} . This procedure is, of course, not unique. One option is to take

$$H^{\text{ext}} := H^* \otimes H \,. \tag{1.2}$$

A purification $\Phi \in H^{\text{ext}}$ of ρ is then defined by the equation

$$\operatorname{Tr}(a\rho) = \langle (\mathbf{1} \otimes a) \Phi, \Phi \rangle_{H^{\text{ext}}}, \qquad (1.3)$$

with $\langle \cdot, \cdot \rangle_{H^{ext}}$ being the scalar product on H^{ext} induced by $\langle \cdot, \cdot \rangle$. If $H \cong \mathbb{C}^n$, then

$$H^* \otimes H \cong \mathfrak{gl}(n, \mathbb{C}) , \qquad (1.4)$$

and—as one easily shows—the induced scalar product $\langle \cdot, \cdot \rangle_{H^{ext}}$ coincides in this case with the natural Hermitean sesquilinear form on gl (n, \mathbb{C})

$$(X, Y) \mapsto \operatorname{Tr}(XY^*) . \tag{1.5}$$

As we shall see, the connection proposed by Uhlmann is directly related to this sesquilinear form.

It is the aim of this paper to investigate Uhlmann's connection for the case of 2×2 density matrices in some detail. First we make some remarks for arbitrary n (section 2). In particular, we show that Uhlmann's concept of parallel transport includes the parallel transport along pure, k-fold degenerate quantum states, which was extensively discussed in ref. [4]. Then we discuss the bundle picture for n=2 including the boundary of pure states (section 3). In section 4 we show a relation of Uhlmann's connection to the canonical connection in the quaternionic Hopf bundle (instanton). In section 5 we discuss the Riemannian metric on the space of density matrices induced by the Bures metric and show that Uhlmann's connection fulfils the source-free Yang-Mills equation.

2. General remarks

We denote the space of complex $n \times n$ matrices by M_n and by \mathcal{D}_n the subspace of (not normalized) density matrices. Consider the stratification

$$M_n \ni w \mapsto \rho \coloneqq w w^* \in \mathcal{D}_n , \qquad (2.1)$$

which is in fact the orbit mapping of the right U(n) action on M_n . This stratification is a union of fibre bundles,

$$M_n = \bigcup_k M_n(k) \to \bigcup_k \mathscr{Q}_n(k) = \mathscr{Q}_n, \qquad (2.2)$$

where $M_n(k)$ [$\mathcal{D}_n(k)$] denotes the manifold of rank-k matrices [rank-k density matrices]. The generic (dense) stratum defined by det $w \neq 0$ is isomorphic to the trivial principal bundle

$$\operatorname{GL}(n,\mathbb{C}) \to \operatorname{GL}(n,\mathbb{C})/\operatorname{U}(n)$$
, (2.3)

and

$$M_n(k) \to \mathcal{D}_n(k) \tag{2.4}$$

are the singular strata, for k < n.

We denote by $P_n(k)$ [$S_n(k)$] the space of k-frames [orthonormal k-frames] of \mathbb{C}^n . Moreover, let $\mathbb{C}^n \cong \mathbb{C}^k \oplus \mathbb{C}^{n-k}$ be a fixed orthogonal decomposition and $p:\mathbb{C}^n \to \mathbb{C}^k$ the corresponding projection. In the following we consider a k-frame f as an injective mapping $f:\mathbb{C}^k \to \mathbb{C}^n$. We denote the matrices corresponding to p and f by the same letters. Then the group U(k) acts in a natural way to the right on $P_n(k)$ and $f \mapsto ff^*$ defines the principal bundle $P_n(k) \to \mathcal{D}_n(k)$.

Proposition 2.1. The mapping

$$\Phi: P_n(k) \times_{\mathrm{U}(k)} \mathrm{U}(n-k) \setminus \mathrm{U}(n) \to M_n(k)$$
(2.5)

given by

$$\Phi([(f, [u])]) := fpu$$
(2.6)

is a bundle isomorphism.

Proof. Obviously, Φ is a well-defined mapping. Moreover, since $pp^* = Id_{\mathbb{C}^k}$, we have $fpu(fpu)^* = ff^*$, and, therefore, Φ maps fibres into fibres. It is easy to see that Φ is one-to-one on fibres.

Remark 2.2. The isomorphism (2.5) is a special case of the more general situation [5], when a group G acts on a space M to the right with only one orbit type, say (H). In this case M is isomorphic to the associated bundle $P \times_{N/H} H \setminus G$, where N is the normalizer of H in G and P is the N/H principal bundle of elements of M with stabilizer H.

Remark 2.3. The mapping $i: P_n(k) \to M_n(k)$ defined by

$$i(f) \coloneqq fp \tag{2.7}$$

is an injective bundle homomorphism. Since $S_n(k)$ is a subbundle of $P_n(k)$, with the embedding defined by

$$f^*f = \mathrm{Id}_{\mathbb{C}^k}, \qquad (2.8)$$

we conclude that $S_n(k)$ is a subbundle of $M_n(k)$.

It was shown in ref. [3] that on the above defined principal bundle, see (2.3), the equation

$$w^* dw - dw^* w = w^* w A + A w^* w$$
 (2.9)

defines a connection form A. We shall give a geometrical characterization of this

connection. For that purpose, let us denote the Riemannian metric on the bundle space $GL(n, \mathbb{C})$ induced from M_n by h,

$$h(X, Y) = \operatorname{Re}\operatorname{Tr}(XY^*), \qquad (2.10)$$

and the corresponding vector space norm by $\|\cdot\|$,

$$\|X\|^2 = \operatorname{Tr}(XX^*) . \tag{2.11}$$

Proposition 2.4. Let $X \in T_w GL(n, \mathbb{C})$. Then the following conditions are equivalent

(1) X is horizontal with respect to A, A(X) = 0.
(2) X fulfils

$$w^*X - X^*w = 0. (2.12)$$

(3) X is orthogonal to the vertical subspace in the sense of h.

(4) X has minimal length in the sense of h among all vectors with the same projection to the base space.

Proof.

(1) The equivalence of the first two points is obvious by (2.9).

(2) A vertical vector is of the form

$$V = wa , \qquad (2.13)$$

with $a = -a^*$. X is orthogonal to the vertical subspace iff

$$Tr(a(X^*w - w^*X)) = 0$$
, (2.14)

for all $a \in u(n)$, that means, iff $X^*w - w^*X = 0$. This shows the equivalence of points 2 and 3.

(3) Decompose X = Y + V, where V is vertical and Y is orthogonal to V. Then we have $||X||^2 = ||Y + V||^2 = ||Y||^2 + ||V||^2$, showing the equivalence of points 3 and 4.

In ref. [6] we have calculated A and its curvature F for the case n=2 explicitly. The result is

$$A = \frac{1}{2}(\theta - \theta^{*}) + \frac{1}{2\operatorname{Tr}(w^{*}w)} [w^{*}w, \theta + \theta^{*}], \qquad (2.15)$$

$$F = \frac{|\det w|^2}{2[\operatorname{Tr}(w^*w)]^2} \left[\theta + \theta^*, \theta + \theta^*\right], \qquad (2.16)$$

with $\theta = w^{-1} dw$ denoting the structure form on $GL(n, \mathbb{C})$.

For later purposes, we define the following trivial SU(n) subbundle of the U(n) bundle (2.3):

$$Q_n \coloneqq \{ w \in \operatorname{GL}(n, \mathbb{C}) : \det w \in \mathbb{R}_+ \} .$$
(2.17)

Proposition 2.5. The connection A defined by (2.9) is reducible to Q_n .

Proof. We have to show that on $Q_n A$ takes values in the subalgebra su(n), that means, $\operatorname{Tr} A=0$. Since det $w \neq 0$, we can multiply the defining equation (2.9) by $(w^*w)^{-1}$ to the left. This yields

$$w^{-1} dw - w^{-1} w^{*-1} dw^* w = A + (w^* w)^{-1} A w^* w, \qquad (2.18)$$

and-after taking the trace-we have

$$\operatorname{Tr} A = \frac{1}{2} \operatorname{Tr} (w^{-1} \, \mathrm{d} w - (w^{-1} \, \mathrm{d} w)^*) \,. \tag{2.19}$$

From

$$d(\det w) = \det w \cdot \operatorname{Tr}(w^{-1} dw)$$
(2.20)

we get that $Tr(w^{-1}dw)$ is a real-valued form on Q_n and, therefore, TrA=0 on Q_n .

It is interesting to discuss the mathematical meaning of the defining equation (2.9) for the case of singular matrices. This will be done in another paper [7]. In particular, we will show

Proposition 2.6. The distribution

$$F_{w} := \{X \in T_{w} M_{n}(k) : w^{*} X - X^{*} w = 0\}$$
(2.21)

defines a connection on the bundle $M_n(k) \rightarrow \mathcal{D}_n(k)$.

Remark 2.7. Due to remark 2.2, the Stiefel bundle $S_n(k)$ is a subbundle of $M_n(k)$. Since $S_n(k)$ is the purification space of k-fold degenerate quantum states, it is interesting to ask which connection on $S_n(k)$ is induced by the above defined connection. From eqs. (2.7) and (2.8) we see that every vector $X \in T_s i(S_n(k))$ fulfils

$$X^*s + s^*X = 0$$
, (2.22)

for every $s \in i(S_n(k))$. Inserting this into the horizontality condition (2.21) yields that X is horizontal iff

$$s^*X=0$$
. (2.23)

The corresponding connection form is

$$A = s^* \,\mathrm{d}s$$
 (2.24)

Its pull-back under the embedding i, see eq. (2.7), to the Stiefel bundle gives the canonical connection—as already observed in refs. [3,8]. This connection was used in ref. [4] for the discussion of k-fold degenerate quantum states.

3. Structure of singular orbits and connection on the boundary for the case n=2

For n=2 we have the stratification

$$M_2 \ni w \mapsto \rho = w w^* \in \mathscr{D}_2 , \qquad (3.1)$$

which has only one nontrivial singular orbit type, defined by rank w=1. From now on we restrict ourselves to normalized density matrices,

$$\operatorname{Tr} \rho \equiv \operatorname{Tr}(ww^*) = 1 . \tag{3.2}$$

We denote the space of matrices w satisfying (3.2) by \hat{M}_2 , the subspaces of matrices of rank k by $\hat{M}_2(k)$, k=1, 2, and—correspondingly—the space of normalized density matrices by $\hat{\mathcal{D}}_2$, the subspaces of rank k matrices by $\hat{\mathcal{D}}_2(k)$, k=1, 2.

We see from eq. (3.2) that

$$\hat{M}_2 \cong \mathbb{S}^7 \,. \tag{3.3}$$

Moreover, every $\rho \in \hat{\mathcal{D}}_2$ can be represented as

$$\rho = \frac{1}{2} \cdot \mathbf{1} + x_k \sigma^k , \quad \sum_{k=1}^3 x_k^2 \le \frac{1}{4} , \qquad (3.4)$$

 $x_k \in \mathbb{R}^3$, (σ^k) the Pauli matrices. It follows that

$$\det \rho = \frac{1}{4} - \sum_{k=1}^{3} x_k^2, \qquad (3.5)$$

and we have

$$\hat{\mathscr{D}}_2 \cong \mathbf{D}^3 \,, \tag{3.6}$$

$$\hat{\mathscr{D}}_2(1) \cong \partial \mathbf{D}^3 \cong \mathbf{S}^2 \,, \tag{3.7}$$

$$\hat{\mathscr{D}}_2(2) \cong \operatorname{Int}(\mathrm{D}^3) , \qquad (3.8)$$

where D³ denotes a three-dimensional disc. Putting $x_0^2 = \det \rho$ we can identify $\hat{\mathscr{D}}_2$ with the upper half shell of a three-sphere and the boundary $\hat{\mathscr{D}}_2(1)$ of pure states with its equator. Obviously, the generic stratum

$$\hat{M}_2(2) \cong \mathbb{S}^7 \to \operatorname{Int}(\mathbb{D}^3) \cong \hat{\mathscr{D}}_2(2) \tag{3.9}$$

is a principal U(2) bundle. The structure of the bundle

$$\hat{M}_2(1) \to \hat{\mathcal{D}}_2(1) \tag{3.10}$$

follows from proposition 2.1. We have

$$M_2(1) \cong P_2(1) \times_{U(1)} U(1) \setminus U(2)$$
. (3.11)

After inserting (2.6) into (3.2) and comparing with (2.8) we see that

$$\widehat{M}_2(1) \cong S_2(1) \times_{U(1)} U(1) \setminus U(2)$$
. (3.12)

Finally, $U(1) \setminus U(2) \cong S^3$ and the Stiefel bundle $S_2(1) \rightarrow \hat{\mathscr{D}}_2(1)$ coincides with the complex Hopf bundle $S^3 \rightarrow S^2$; therefore,

$$\hat{M}_2(1) \cong S^3 \times_{U(1)} S^3$$
. (3.13)

Due to remark 2.3 we have an embedding of the complex Hopf bundle into $\hat{M}_2(1)$ and due to remark 2.7, the induced connection on the boundary of pure states coincides with the canonical Hopf bundle connection (gauge potential of a magnetic monopole).

An explicit description in terms of homogeneous coordinates is obtained as follows: According to remark 2.3 and (3.12) the embedding of the Stiefel bundle $S_2(1)$ into $\hat{M}_2(1)$ is given by

$$S^{3} \cong S_{2}(1) \ni \begin{pmatrix} a \\ b \end{pmatrix} \mapsto s \coloneqq \begin{pmatrix} a \\ b \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \in \hat{M}_{2}(1) ,$$
 (3.14)

where $|a|^2 + |b|^2 = 1$, and every $w \in \hat{M}_2(1)$ takes the form

$$w = su = \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} u, \qquad (3.15)$$

with *u* being a representative of the class $[u] \in U(1) \setminus U(2) \cong S^3$. The embedding of the U(1) factor is given by

$$U(1) \ni e^{i\alpha} \mapsto \begin{pmatrix} 1 & 0 \\ 0 & e^{i\alpha} \end{pmatrix} \in U(2) .$$

Of course (3.15) is unique up to a $N(U(1))/U(1) \cong U(1)$ factor, $w = shh^{-1}u$, and this factor may be represented as

$$h = \begin{pmatrix} e^{i\alpha} & 0 \\ 0 & 1 \end{pmatrix}.$$

The bundle projection in these coordinates is now

$$\mathbb{C}^2 \supset \mathbf{S}^3 \ni \begin{pmatrix} a \\ b \end{pmatrix} \mapsto \left[\begin{pmatrix} a e^{i\alpha} \\ b e^{i\alpha} \end{pmatrix} \right] \in \mathbb{C}\mathbf{P}^1 , \qquad (3.16)$$

making the Hopf bundle structure explicit. Finally, the pull-back of the connection form (2.24) takes the form

$$A = \bar{a} \,\mathrm{d}a + \bar{b} \,\mathrm{d}b \,, \tag{3.17}$$

which is the canonical Hopf bundle connection in homogeneous coordinates.

4. A relation to instantons

The fact that the connection defined by Uhlmann coincides for pure states with a canonical geometric structure suggests that for mixed states something similar happens. This is indeed the case. Putting

$$w = (1/\sqrt{2})(x+iz)$$
, (4.1)

with (x, z) being a pair of quaternions, see ref. [9], we identify S⁷ with the bundle space of the quaternionic Hopf bundle over $\mathbb{HP}^1 \cong S^4$. The subbundle $\hat{Q}_2 = Q_2 \cap S^7$, with Q_2 defined by eq. (2.17), is in quaternionic coordinates given by

$$Tr(xz^*) = 0.$$
 (4.2)

In the quaternionic Hopf bundle we have the canonical connection (instanton)

$$\dot{A} = x^* \, \mathrm{d}x + z^* \, \mathrm{d}z \,, \tag{4.3}$$

see ref. [9].

Proposition 4.1. The connection form A (treated as a connection on \hat{Q}_2) coincides with the restriction of \hat{A} to \hat{Q}_2 .

Proof. From the defining equation (2.9) we have

$$\operatorname{Tr}(Aw^*w) = \frac{1}{2}\operatorname{Tr}(w^*dw - dw^*w)$$
. (4.4)

On the other hand, a simple calculation shows that

$$w^{*}wA + Aw^{*}w$$

= Tr(w^{*}w) A + w^{*}w Tr A + [Tr(Aw^{*}w) - Tr(w^{*}w) Tr A]1
= A + Tr(Aw^{*}w) 1 + Tr A(w^{*}w - 1). (4.5)

Inserting (4.4) and (4.5) into the defining equation (2.9) we get

$$A = w^* dw - dw^* w - \frac{1}{2} \operatorname{Tr}(w^* dw - dw^* w) - \operatorname{Tr} A(w^* w - 1). \quad (4.6)$$

Using (4.1) yields

$$w^{*} dw - dw^{*}w$$

$$= \frac{1}{2} (x^{*} dx - dx^{*}x + z^{*} dz - dz^{*}z) + \frac{1}{2}i(x^{*} dz - dx^{*}z + dz^{*}x - dx^{*}z)$$

$$= \mathring{A} + \frac{1}{2}i(x^{*} dz - dx^{*}z + dz^{*}x - dx^{*}z) .$$
(4.8)

A simple quaternionic calculation shows that the quantity $\tau \equiv x^* dz - dx^* z + dz^* x - dx^* z$ fulfils

$$\tau = \frac{1}{2} \operatorname{Tr} \tau \cdot \mathbf{1} . \tag{4.9}$$

Therefore, we obtain

$$w^* dw - dw^* w - \frac{1}{2} Tr(w^* dw - dw^* w) = \mathring{A}.$$
 (4.10)

Taking into account that on \hat{Q}_2 we have Tr A=0, see proposition 2.5, we see from (4.6) and (4.10) that A and \hat{A} coincide on \hat{Q}_2 .

5. Field equations

5.1. THE NATURAL RIEMANNIAN METRIC ON $\mathcal{D}_2(2)$

The norm (2.11) induces a (topological) metric on the space of density matrices \mathcal{D}_2 , called the Bures metric [10],

$$d_{\rm B}(\rho,\mu) := \inf \|w - v\| , \qquad (5.1)$$

with $\rho = ww^*$, $\mu = vv^*$. Obviously,

$$|w-v||^2 = \operatorname{Tr}((w-v)(w-v)^*) = 2-2 \operatorname{Re} \operatorname{Tr}(wv^*)$$
,

and, therefore,

$$d_{\rm B}(\rho,\mu) = \sqrt{2 - 2 \sup\{\operatorname{Re} \operatorname{Tr}(wv^*)\}}.$$
 (5.2)

The quantity

$$t(\rho,\mu) := \sup\{\operatorname{Re}\operatorname{Tr}(wv^*)\}$$
(5.3)

is the transition probability between mixed states ρ and μ [3]. One finds [11]

$$d_{\rm B}(\rho,\mu) = \sqrt{2 - 2 \operatorname{Tr}(\mu^{1/2} \rho \mu^{1/2})^{1/2}} .$$
 (5.4)

Moreover, we have a natural Riemannian metric g on the manifold of nonsingular density matrices,

$$g(X, Y) \coloneqq \operatorname{Re} \operatorname{Tr}(X^{\mathrm{h}}(Y^{\mathrm{h}})^{*}), \qquad (5.5)$$

where X, $Y \in T \mathcal{D}_n(n)$ and X^h and Y^h are horizontal lifts in the sense of the given connection. Obviously, g is given by

$$g = s^{*} \{ \operatorname{Re} \operatorname{Tr}((dw - wA)(dw - wA)^{*}) \}, \qquad (5.6)$$

where s is an arbitrary section of the principal bundle (2.3) and dw - wA is the horizontal component of dw.

Proposition 5.1. For n=2 we get

$$g = \frac{1}{2} \operatorname{Tr} (d\rho \cdot d\rho) + d(\det \rho)^{1/2} \cdot d(\det \rho)^{1/2} .$$
 (5.7)

Proof. From (2.15) we have

$$dw - wA = \frac{1}{2}w(\theta + \theta^* - [w^*w, \theta + \theta^*]).$$
(5.8)

Using the (unitary gauge) section

$$s(\rho) := \rho^{1/2}$$
, (5.9)

we get

102

$$s^{*}(dw - wA) = \frac{1}{2}\rho^{1/2}(\rho^{-1/2} d\rho^{1/2} + d\rho^{1/2}\rho^{-1/2} - [\rho, \rho^{-1/2} d\rho^{1/2} + d\rho^{1/2}\rho^{-1/2}]) = \frac{1}{2}\rho^{1/2}(\rho^{-1/2} d\rho\rho^{-1/2} - [\rho, \rho^{-1/2} d\rho\rho^{-1/2}]) = \frac{1}{2}(d\rho\rho^{-1/2} - \rho d\rho\rho^{-1/2} + d\rho\rho^{1/2}).$$
(5.10)

Inserting (5.10) into (5.6) yields

$$g = \frac{1}{4} \operatorname{Tr} \{ (\rho^{-1} + 2 - \rho) (d\rho)^2 + (\rho - 2) d\rho \rho^{-1} d\rho \rho \}.$$
 (5.11)

Denoting

$$\lambda \coloneqq \det \rho^{1/2} \,, \tag{5.12}$$

the Cayley-Hamilton theorem for ρ yields

$$\rho^2 - \rho + \lambda^2 \cdot \mathbf{1} = 0. \tag{5.13}$$

As a consequence we get

$$\rho^{-1} = \frac{1}{\lambda^2} \left(\mathbf{1} - \rho \right) \,. \tag{5.14}$$

Inserting (5.13) and (5.14) into (5.11), we get

$$g = \frac{1}{4} \operatorname{Tr} \left\{ \left(1 + \frac{1}{\lambda^2} \right) (d\rho)^2 - \frac{2}{\lambda^2} \rho (d\rho)^2 + \frac{1}{\lambda^2} \rho \, d\rho \, \rho \, d\rho \right\}.$$
 (5.15)

Finally, from (5.13) one easily derives the following identities:

$$\operatorname{Tr}(\rho(\mathrm{d}\rho)^2) = \frac{1}{2} \operatorname{Tr}(\mathrm{d}\rho)^2,$$
 (5.16)

$$\operatorname{Tr}(\rho \, \mathrm{d}\rho \, \rho \, \mathrm{d}\rho) = \lambda^2 [\operatorname{Tr}(\mathrm{d}\rho)^2 + 4(\mathrm{d}\lambda)^2] \,. \tag{5.17}$$

Inserting (5.16) and (5.17) into (5.15) gives (5.7).

On the other hand, a Riemannian metric can be obtained by taking the Hessian of the square of the distance function defined by the Bures metric,

$$\tilde{g}_{\rho} = \frac{1}{2} \operatorname{Hess}_{\rho} d_{\mathrm{B}}^{2}(\rho, \cdot) .$$
(5.18)

103

Applying this formula to the n=2 case, one finds that \tilde{g} coincides with g given by (5.7). Using other techniques, formula (5.7) was independently obtained in ref. [12]. In coordinates (x_0, x_k) , introduced in section 3, we get

$$g = \sum_{k=1}^{3} \mathrm{d}x_k^2 + \mathrm{d}x_0^2 \,, \tag{5.19}$$

showing that g coincides with the Riemannian metric on the upper half shell of S^3 of radius $\frac{1}{2}$. In these coordinates the corresponding volume form is given by

$$v = \frac{1}{2x_0} dx^1 \wedge dx^2 \wedge dx^3 . \qquad (5.20)$$

5.2. THE YANG-MILLS EQUATION FOR THE CASE n=2

For the case of normalized density matrices formulae (2.15) and (2.16) for connection and curvature take the form

$$A = \frac{1}{2}(\theta - \theta^{*}) + \frac{1}{2}[w^{*}w, \theta + \theta^{*}], \qquad (5.21)$$

$$F = \frac{1}{2} |\det w|^2 [\theta + \theta^*, \theta + \theta^*] + \frac{1}{2} \operatorname{Tr} \{ w^* w(\theta + \theta^*) \} [w^* w, \theta + \theta] .$$
 (5.22)

Choosing section (5.9) we get the following pull-backs (gauge potential and its field strength):

$$A = [\rho^{1/2}, d\rho^{1/2}], \qquad (5.23)$$

$$F = \frac{1}{2} (\operatorname{Tr} \rho^{1/2})^2 [d\rho^{1/2}, d\rho^{1/2}] - \operatorname{Tr} \rho^{1/2} \cdot \operatorname{Tr} (d\rho^{1/2}) \wedge [\rho^{1/2}, d\rho^{1/2}]. \quad (5.24)$$

(We use the same symbols A and F for the pull-backs!) The last formula is the result of a lengthy, but simple calculation, where one has to use the Cayley-Hamilton theorem

$$\rho - \operatorname{Tr} \rho^{1/2} \cdot \rho^{1/2} + \det \rho^{1/2} \cdot \mathbf{1} = 0, \qquad (5.25)$$

and consequences obtained by differentiating it.

Further calculations will be performed in stereographic projection coordinates (z_k) on S³. Denoting $||z||^2 \equiv \sum_{k=1}^3 z_k^2$, we have

$$x_0 = \frac{1}{2} \frac{\|z\|^2 - 1}{\|z\|^2 + 1}, \qquad x_k = \frac{z_k}{\|z\|^2 + 1}.$$
 (5.26)

Moreover, we denote by η_{ij} the Euclidean metric on \mathbb{R}^3 and put $\mu \equiv ||z||^2 + 1$. Then we get

$$g = \frac{1}{\mu^2} \sum_{k=1}^{3} \mathrm{d}z_k^2, \qquad (5.27)$$

that means,

$$g_{ij} = \frac{1}{\mu^2} \eta_{ij}, \qquad g^{ij} = \mu^2 \eta^{ij}.$$
 (5.28)

For density matrices we have

$$\rho = \frac{1}{2} \cdot \mathbf{1} + \frac{z_k}{\mu} \, \sigma^k \,, \tag{5.29}$$

$$\rho^{1/2} = \frac{1}{\sqrt{2\mu(\mu-1)}} \left[(\mu-1) \cdot \mathbf{1} + z_k \sigma^k \right].$$
 (5.30)

Inserting this into (5.23) and (5.24), we obtain

$$A = \frac{\mathrm{i}}{\mu(\mu - 1)} \epsilon_{lkm} z^l \,\mathrm{d} z^k \,\sigma^m \,, \tag{5.31}$$

$$F = \frac{\mathrm{i}}{\mu^2 (\mu - 1)^2} \{ \epsilon_{ij}^{\ l} (\mu (\mu - 1) \eta_{lm} - z_l z_m) + (2\mu - 1) z^l (\epsilon_{lim} z_j - \epsilon_{ljm} z_i) \} \sigma^m \, \mathrm{d} z^i \wedge \mathrm{d} z^j \,.$$
(5.32)

Proposition 5.2. The above defined gauge field fulfils the source-free Yang–Mills equation-

$$D * F = 0$$
. (5.33)

Proof. The canonical volume form (5.20) takes the form

$$v = \frac{1}{6\mu^3} \epsilon_{klm} \, \mathrm{d} z^k \wedge \mathrm{d} z^l \wedge \mathrm{d} z^m \, .$$

Using this and (5.32), we get for the Hodge dual of F the following formula:

$$*F = \frac{2i}{\mu(\mu-1)} \left[-(\mu-1)\eta_{kl} + 2z_k z_l \right] \sigma^k dz^l .$$
 (5.34)

Now one has to calculate

$$D * F = \frac{1}{2} (*F_{l,k} - *F_{k,l} + [A_k, *F_l] - [A_l, *F_k]) dz^k \wedge dz^l.$$
 (5.35)

Using (5.31) and (5.34) we obtain

$$*F_{l,k} = \frac{4i}{\mu(\mu-1)} \left\{ \eta_{mk} z_l + \eta_{ml} z_k + \eta_{kl} z_m - \frac{2(2\mu-1)}{\mu(\mu-1)} z_m z_k z_l - \frac{1}{\mu} \eta_{ml} z_k \right\} \sigma^m,$$
(5.36)

$$[A_k, *F_l] = \frac{4i}{\mu^2(\mu-1)} \left\{ -\eta_{mk} z_l - \eta_{kl} z_m + \frac{2}{(\mu-1)} z_m z_k z_l \right\}.$$
 (5.37)

Combining these two formulae we get

$$*F_{l,k} - *F_{k,l} = \frac{4i}{\mu^2(\mu - 1)} (\eta_{mk} z_l - \eta_{ml} z_k) \sigma^m$$
$$= -([A_k, *F_l] - [A_l, *F_k]).$$
(5.38)

Finally, taking into account remark 2.7, we notice that the U(1) connection on the boundary of pure states fulfils the source-free Maxwell equation.

The authors are very much indebted to A. Uhlmann for helpful discussions.

References

 M.V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. London A 392 (1984) 45-57;

B. Simon, Holonomy, the quantum adiabatic theorem, and Berry's phase, Phys. Rev. Lett. 51 (1983) 2167-2170.

- [2] J.W. Zwanziger, M. Koenig and A. Pines, Berry's phase, Annu. Rev. Phys. Chem. 41 (1990) 601-646.
- [3] A. Uhlmann, Parallel transport and "quantum holonomy" along density operators, Rep. Math. Phys. 24 (1986) 229-240; A gauge field governing parallel transport along mixed states, Lett. Math. Phys. 21 (1991) 229-236; Parallel transport of phases, in: Differential Geometry, Group Representations and Quantization, eds. J. Hennig, W. Lücke and J. Tolar (Springer, Berlin, 1991).
- [4] F. Wilczek and A. Zee, Appearance of gauge structure of simple dynamical systems, Phys. Rev. Lett. 52 (1984) 2111-2116;

J. Anandan and Y. Aharonov, Geometric quantum phase and angles, Phys. Rev. D 38 (1988) 1863-1870;

A. Bohm, L.J. Boya and B. Kendrick, On the uniqueness of the Berry connection, preprint Univ. of Texas at Austin, 8/5/91, H 2207;

R. Montgomery, in: Symplectic Geometry and Mathematical Physics, eds. Donato et al. (Birkhäuser, Basel) pp. 303-325.

- [5] G.E. Bredon, Introduction to Compact Transformation Groups (Academic Press, New York, 1972).
- [6] J. Dittmann and G. Rudolph, A class of connections governing parallel transport along density matrices, NTZ preprint 10/1991, Univ. of Leipzig (1991), to appear in J. Math. Phys. (1992).
- [7] J. Dittmann and G. Rudolph, Parallel transport along singular density matrices, in preparation.
- [8] L. Dabrowski and A. Jadczyk, Quantum statistical holonomy, J. Phys. A 22 (1989) 3167-3170.
- M.F. Atiyah, Geometry of Yang-Mills fields, Fermi Lectures (Pisa, 1979);
 A. Trautman, Solutions of the Maxwell and Yang-Mills equations associated with Hopf fibrings, Int. J. Theor. Phys. 16 (1977) 561-565.
- [10] D. Bures, An extension of Kakutani's theorem on infinite product measures to the tensor product of semifinite w*-algebras, Trans. Am. Math. Soc. 135 (1969) 199-212.

- [11] H. Araki, A remark on Bures distance function for normal states, Publ. RIMS Kyoto Univ. 6 (1970/71) 477-482; Bures distance function and a generalization of Sakai's noncommutative Radon-Nikodym theorem, Publ. RIMS Kyoto Univ. 8 (1972) 335-342.
- [12] M. Hübner, Explicit computation of the Bures distance for density matrices, NTZ preprint 21/ 1991, Univ. of Leipzig (1991).